Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 96(4): e0196921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1702819

RESUMEN

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , Enfermedades Virales del Sistema Nervioso Central/inmunología , Microglía/inmunología , SARS-CoV-2/fisiología , Replicación Viral/inmunología , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Enfermedades Virales del Sistema Nervioso Central/genética , Enfermedades Virales del Sistema Nervioso Central/virología , Quimiocinas/genética , Quimiocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microglía/virología , Neuronas/inmunología , Neuronas/virología , Replicación Viral/genética
3.
Inflammopharmacology ; 29(4): 1049-1059, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1303332

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the central nervous system and cause several neurological manifestations. Data from cerebrospinal fluid analyses and postmortem samples have been shown that SARS-CoV-2 has neuroinvasive properties. Therefore, ongoing studies have focused on mechanisms involved in neurotropism and neural injuries of SARS-CoV-2. The inflammasome is a part of the innate immune system that is responsible for the secretion and activation of several pro-inflammatory cytokines, such as interleukin-1ß, interleukin-6, and interleukin-18. Since cytokine storm has been known as a major mechanism followed by SARS-CoV-2, inflammasome may trigger an inflammatory form of lytic programmed cell death (pyroptosis) following SARS-CoV-2 infection and contribute to associated neurological complications. We reviewed and discussed the possible role of inflammasome and its consequence pyroptosis following coronavirus infections as potential mechanisms of neurotropism by SARS-CoV-2. Further studies, particularly postmortem analysis of brain samples obtained from COVID-19 patients, can shed light on the possible role of the inflammasome in neurotropism of SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Sistema Nervioso Central/metabolismo , Inflamasomas/metabolismo , Piroptosis/fisiología , SARS-CoV-2/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , COVID-19/inmunología , Sistema Nervioso Central/inmunología , Humanos , Inflamasomas/inmunología , SARS-CoV-2/inmunología
4.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1281436

RESUMEN

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Microglía/inmunología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Linfocitos T CD8-positivos/metabolismo , COVID-19/patología , Comunicación Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Inflamación , Activación de Linfocitos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Bulbo Olfatorio/inmunología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Insuficiencia Respiratoria/inmunología , Insuficiencia Respiratoria/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
Front Immunol ; 12: 656700, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1211815

RESUMEN

SARS-CoV-2, the novel coronavirus infection has consistently shown an association with neurological anomalies in patients, in addition to its usual respiratory distress syndrome. Multi-organ dysfunctions including neurological sequelae during COVID-19 persist even after declining viral load. We propose that SARS-CoV-2 gene product, Spike, is able to modify the host exosomal cargo, which gets transported to distant uninfected tissues and organs and can initiate a catastrophic immune cascade within Central Nervous System (CNS). SARS-CoV-2 Spike transfected cells release a significant amount of exosomes loaded with microRNAs such as miR-148a and miR-590. microRNAs gets internalized by human microglia and suppress target gene expression of USP33 (Ubiquitin Specific peptidase 33) and downstream IRF9 levels. Cellular levels of USP33 regulate the turnover time of IRF9 via deubiquitylation. Our results also demonstrate that absorption of modified exosomes effectively regulate the major pro-inflammatory gene expression profile of TNFα, NF-κB and IFN-ß. These results uncover a bystander pathway of SARS-CoV-2 mediated CNS damage through hyperactivation of human microglia. Our results also attempt to explain the extra-pulmonary dysfunctions observed in COVID-19 cases when active replication of virus is not supported. Since Spike gene and mRNAs have been extensively picked up for vaccine development; the knowledge of host immune response against spike gene and protein holds a great significance. Our study therefore provides novel and relevant insights regarding the impact of Spike gene on shuttling of host microRNAs via exosomes to trigger the neuroinflammation.


Asunto(s)
COVID-19/metabolismo , Exosomas/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ubiquitina Tiolesterasa/metabolismo , COVID-19/genética , COVID-19/fisiopatología , COVID-19/virología , Línea Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/fisiopatología , Sistema Nervioso Central/virología , Endopeptidasas/metabolismo , Exosomas/genética , Exosomas/patología , Humanos , Inflamación/inmunología , Inflamación/virología , Interferón beta/metabolismo , MicroARNs/genética , Microglía/patología , FN-kappa B/metabolismo , Estabilidad Proteica , Factor de Necrosis Tumoral alfa/metabolismo
6.
Sci Rep ; 11(1): 5402, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1123146

RESUMEN

Most multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABAA-receptors (GABAA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19. Here, we show that oral GABA, which cannot cross the blood-brain barrier (BBB), does not affect the course of murine experimental autoimmune encephalomyelitis (EAE). In contrast, oral administration of the BBB-permeable GABAA-R-specific agonist homotaurine ameliorates monophasic EAE, as well as advanced-stage relapsing-remitting EAE (RR-EAE). Homotaurine treatment beginning after the first peak of paralysis reduced the spreading of Th17 and Th1 responses from the priming immunogen to a new myelin T cell epitope within the CNS. Antigen-presenting cells (APC) isolated from homotaurine-treated mice displayed an attenuated ability to promote autoantigen-specific T cell proliferation. The ability of homotaurine treatment to limit epitope spreading within the CNS, along with its safety record, makes it an excellent candidate to help treat MS and other inflammatory disorders of the CNS.


Asunto(s)
Sistema Nervioso Central/patología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Taurina/análogos & derivados , Animales , Presentación de Antígeno/efectos de los fármacos , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Proteína Proteolipídica de la Mielina/inmunología , Fragmentos de Péptidos/inmunología , Recurrencia , Bazo/patología , Linfocitos T/efectos de los fármacos , Taurina/farmacología , Ácido gamma-Aminobutírico/farmacología
7.
Rev Neurosci ; 32(4): 427-442, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1069660

RESUMEN

As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.


Asunto(s)
COVID-19/complicaciones , Sistema Nervioso Central/virología , Enfermedades del Sistema Nervioso/complicaciones , SARS-CoV-2/patogenicidad , COVID-19/inmunología , Sistema Nervioso Central/inmunología , Humanos , Inmunidad/inmunología , Enfermedades del Sistema Nervioso/inmunología , Neuroprotección/inmunología , SARS-CoV-2/inmunología
8.
Brain Behav Immun ; 91: 740-755, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1064860

RESUMEN

Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Receptores Toll-Like/fisiología , Animales , Astrocitos/fisiología , Encéfalo/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/inmunología , Infecciones del Sistema Nervioso Central/patología , Encefalitis/inmunología , Humanos , Inmunidad Innata/fisiología , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Receptores Toll-Like/metabolismo
9.
Viruses ; 13(2)2021 01 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1052507

RESUMEN

Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -ß) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Citocinas/metabolismo , Inmunidad Innata , Virosis/inmunología , Animales , Humanos , Inflamasomas , Interferón Tipo I/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Reconocimiento de Patrones , Transducción de Señal , Receptores Toll-Like/metabolismo
10.
Nat Rev Immunol ; 21(7): 441-453, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1007586

RESUMEN

Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
Sistema Nervioso Central/inmunología , Interacciones Microbiota-Huesped/inmunología , Células Madre Pluripotentes/inmunología , Tropismo Viral , COVID-19 , Humanos , Microglía , Neuroglía , Neuronas , SARS-CoV-2
11.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: covidwho-840609

RESUMEN

Alpha/beta interferon (IFN-α/ß) signaling through the IFN-α/ß receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/ß pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/ß induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/ß pathway genes as well as Il6, Tnf, and Il1ß between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/ß signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/ß and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/ß induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/ß functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/ß receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/ß pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/ß and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.


Asunto(s)
Sistema Nervioso Central/virología , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Sistema Nervioso Central/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Encefalomielitis/inmunología , Encefalomielitis/virología , Macrófagos/virología , Ratones , Ratones Mutantes , Microglía/virología , Virus de la Hepatitis Murina/fisiología , Neuronas/virología , Infiltración Neutrófila , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Replicación Viral
12.
Proc Natl Acad Sci U S A ; 117(27): 15902-15910, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: covidwho-611002

RESUMEN

Neurotropic strains of mouse hepatitis virus (MHV), a coronavirus, cause acute and chronic demyelinating encephalomyelitis with similarities to the human disease multiple sclerosis. Here, using a lineage-tracking system, we show that some cells, primarily oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs), survive the acute MHV infection, are associated with regions of demyelination, and persist in the central nervous system (CNS) for at least 150 d. These surviving OLs express major histocompatibility complex (MHC) class I and other genes associated with an inflammatory response. Notably, the extent of inflammatory cell infiltration was variable, dependent on anatomic location within the CNS, and without obvious correlation with numbers of surviving cells. We detected more demyelination in regions with larger numbers of T cells and microglia/macrophages compared to those with fewer infiltrating cells. Conversely, in regions with less inflammation, these previously infected OLs more rapidly extended processes, consistent with normal myelinating function. Together, these results show that OLs are inducers as well as targets of the host immune response and demonstrate how a CNS infection, even after resolution, can induce prolonged inflammatory changes with CNS region-dependent impairment in remyelination.


Asunto(s)
Sistema Nervioso Central/inmunología , Infecciones por Coronavirus/complicaciones , Enfermedades Desmielinizantes/etiología , Oligodendroglía/inmunología , Animales , Infecciones por Coronavirus/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Luminiscentes , Masculino , Ratones , Virus de la Hepatitis Murina , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA